首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67845篇
  免费   6012篇
  国内免费   45篇
  2023年   342篇
  2022年   356篇
  2021年   1434篇
  2020年   1024篇
  2019年   1159篇
  2018年   1587篇
  2017年   1332篇
  2016年   2212篇
  2015年   3247篇
  2014年   3209篇
  2013年   3920篇
  2012年   4752篇
  2011年   4452篇
  2010年   2691篇
  2009年   2480篇
  2008年   3122篇
  2007年   3065篇
  2006年   2841篇
  2005年   2993篇
  2004年   2908篇
  2003年   2461篇
  2002年   2049篇
  2001年   1560篇
  2000年   1445篇
  1999年   1308篇
  1998年   639篇
  1997年   559篇
  1996年   632篇
  1995年   487篇
  1994年   512篇
  1993年   484篇
  1992年   981篇
  1991年   865篇
  1990年   801篇
  1989年   792篇
  1988年   766篇
  1987年   705篇
  1986年   660篇
  1985年   649篇
  1984年   607篇
  1983年   455篇
  1982年   351篇
  1981年   348篇
  1980年   329篇
  1979年   452篇
  1978年   380篇
  1977年   310篇
  1975年   310篇
  1974年   313篇
  1973年   314篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep‐sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high‐throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full‐length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.  相似文献   
992.
Modifications of the Illinois River and associated tributaries have resulted in altered hydrologic cycles and persistent river‐floodplain connections during the growing season that frequently impede the establishment of hydrophytic vegetation and have reduced value for migratory waterfowl and other waterbirds. To help guide floodplain restoration, we compared energetic carrying capacity for waterfowl in two wetland complexes along the Illinois River under different management regimes during 2012–2015. The south pool of Chautauqua National Wildlife Refuge (CNWR) was seasonally flooded due to a partial river connection and managed for moist‐soil vegetation. Emiquon Preserve was hydrologically isolated from the Illinois River by a high‐elevation levee and managed as a semipermanently flooded emergent marsh. Semipermanent emergent marsh management at Emiquon Preserve produced 5,495 energetic use‐days (EUD)/ha for waterfowl and other waterbirds across wetland cover types and years, and seasonal moist‐soil management at CNWR produced 6,199 EUD/ha in one of 4 years. At Emiquon Preserve, the aquatic bed cover type produced 9,660 EUD/ha, followed by 5,261 EUD/ha in moist‐soil, 1,398 EUD/ha in persistent emergent, 1,185 EUD/ha in hemi‐marsh, and 12 EUD/ha in open water cover types. At CNWR, the annual grass and sedge cover type produced 7,031 EUD/ha, followed by 5,618 EUD/ha in annual broadleaf and 1,305 EUD/ha in perennial grass cover types. Restoration of floodplain wetlands in isolation from frequent flood pulses during the growing season can produce hemi‐marsh and aquatic bed vegetation communities that provide high‐quality habitat for waterfowl and which have been mostly eliminated from large river systems in the Midwest, U.S.A.  相似文献   
993.
We examined temporal changes in spatial patterns of submersed aquatic vegetation (SAV) in response to the restoration of geomorphic habitat in Navigation Pool 8 of the Upper Mississippi River from 1998 to 2016. The frequency of occurrence and species composition of SAV at sampling sites were spatially interpolated for each year to create annual maps. Linear models were fitted to temporal changes in SAV within each map pixel. The frequency of occurrence of SAV (across all species) increased over time in much of the impounded region of the pool, including areas near restored islands. However, impounded areas maintained a relatively consistent species composition over time, with species known to be tolerant of higher flow velocities (>0.10 m/second) and wind fetch distances (>1,000 m) (e.g. Vallisneria americana) being most abundant. In contrast, areas protected by newly constructed islands transitioned from V. americana to species found in other protected backwater habitats and known to be intolerant of high flow velocities and wind fetch distances (e.g. Ceratophyllum demersum). The results suggest that previously reported improvements in water clarity may have improved growing conditions for all SAV species, especially in the lower impounded portion of the pool, while island restoration created more backwater‐like habitats and facilitated changes in species composition. Assessing changes in SAV occurrence alone offers only a partial view of local‐scale river restoration (e.g. island building), while analyses of species composition are likely to be more indicative of the types of changes (i.e. reduced flow velocity and wind fetch) associated with restoring geomorphic habitat.  相似文献   
994.
995.
996.
β‐Adrenergic signaling regulates many physiological processes in skeletal muscles. A wealth of evidence has shown that β‐agonists can increase skeletal muscle mass in vertebrates. Nevertheless, to date, the specific role of β‐adrenergic receptors in different cell phenotypes (myoblasts, fibroblasts, and myotubes) and during the different steps of embryonic skeletal muscle differentiation has not been studied. Therefore, here we address this question through the analysis of embryonic chick primary cultures of skeletal muscle cells during the formation of multinucleated myotubes. We used isoproterenol (ISO), a β‐adrenergic receptor agonist, to activate the β‐adrenergic signaling and quantified several aspects of muscle differentiation. ISO induced an increase in myoblast proliferation, in the percentage of Pax7‐positive myoblasts and in the size of skeletal muscle fibers, suggesting that ISO activates a hyperplasic and hypertrophic muscle response. Interestingly, treatment with ISO did not alter the number of fibroblast cells, suggesting that ISO effects are specific to muscle cells in the case of chick myogenic cell culture. We also show that rapamycin, an inhibitor of the mammalian target of rapamycin signaling pathway, did not prevent the effects of ISO on chick muscle fiber size. The collection of these results provides new insights into the role of β‐adrenergic signaling during skeletal muscle proliferation and differentiation and specifically in the regulation of skeletal muscle hyperplasia and hypertrophy.  相似文献   
997.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   
998.
Renewable energy (RE) technologies are looked upon favorably to provide for future energy demands and reduce greenhouse gas (GHG) emissions. However, the installation of these technologies requires large quantities of finite material resources. We apply life cycle assessment to 100 years of electricity generation from three stand‐alone RE technologies—solar photovoltaics, run‐of‐river hydro, and wind—to evaluate environmental burden profiles against baseline electricity generation from fossil fuels. We then devised scenarios to incorporate circular economy (CE) improvements targeting hotspots in systems’ life cycle, specifically (1) improved recycling rates for raw materials and (ii) the application of eco‐design. Hydro presented the lowest environmental burdens per kilowatt‐hour of electricity generation compared with other RE technologies, owing to its higher efficiency and longer life spans for main components. Distinct results were observed in the environmental performance of each system based on the consideration of improved recycling rates and eco‐design. CE measures produced similar modest savings in already low GHG emissions burdens for each technology, while eco‐design specifically had the potential to provide significant savings in abiotic resource depletion. Further research to explore the full potential of CE measures for RE technologies will curtail the resource intensity of RE technologies required to mitigate climate change.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号